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In 1829 Gauss found and described 111 a remarkable property of material 

systems, namely to move rlth least conatralnt. Gauss discovered this 

property in connection rith a transformation of material systems. The 

Gauss tranaformatlon consisted of a relaxation [removal I (the terminol- 

ogy stems from here) of all the constraints of the systems. After Gauss 

attempts uere made to find other forms of relaxation rhere a property 

similar to that formulated by Gauss nould hold. 

In his nNechanic8g Mach noted that the property of least constraint, 

rhich holds for system8 rith complete relaxation, possibly also holds 

for a relaxation of only a part of their constraint8 (partial relax&ion 

of material systems). This assumption by Bach uas verified by E.A. Bolo- 
tov. rho proved it for a system rlth linear dffferentlal constraints of 

the first order [ 2 I. Later on this case uas also extended to a system 

with nonlinear constraints [ 3 I. 

In 1982 N.G. Chetaev [ 4 ] developed a ner point of vier on the re- 

laxation of material eystema. He proposed to apply the term, relaxatlos, 
to any system tranaforntion which satirfled some mathematical algorithm 

(parslletrlc relaxation of material rystemsl. N.G. Cbetaev added to his 

propositfon a proof of a corresponding minimum theorem. 

In the present paper the problem of the relaxation of a material 
system Is studied from the qualitative point of vier. A SUfflCientlY 

broad qualitative definition of the relaxation of a system 18 given, and 

a corresponding ~inlmum theorem is eetablished. after rhich Its mathe- 
matical algorithm is derived from the given qualitative defln%tion of the 

material systems. 

A continuous numbering of the geowtric and kinematic Parameters of 
the system (coordinates 8, velocities x’, accelerations I” 1 and also 
forces acting on tbe system is lised in this paper. The Indices utilioed 

In the paper run through the folloring values: 
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i = I,. . . ,3n; a = 1,. . . ,r; p=i ,..., s ’ h=i ,..., r’; p=i,...,h 

Iiere n Is equal tothe number of points of the material systems studied, 
the actual meaning of the values r, 8, r’, 8’ rill be clear from the 
text. 

1. We shall call a Chetaev system all possible material systems with 
constraints of the form 

f* (tj zip 2i’) = 0 (1.1) 

for which “possible displacenmntsm are given by the relations 

(1.2) 

The aetaev systems may be outlined completely if one notes that 
Gauss’ principle [ 4 1 holds for every one of them, and that these systems 
are unique smong the material systems with constraints of the form (1.11, 
for which Gauss’ principle 15 1 holds in general. 

We shall assvae that the system in its given state is awe relaxed if 
in this state the multiplicity of the accelerations which it can acquire 
in actual motion is enlarged. In relation to this we shall apply the 
term, relaxation of the material system, to any transformation of it 
which, without narrowing down the multiplicity of the allowable states 
of the system, makes the system more relaxed in each one of its given 
states. 

(Note. The notion of ‘enlargement” in this formulation is understood 
as a ‘supplement’, and thus all states and accelerations, allorable for 
the basic system. are assumed also to be allonable for the 
system. 1 

Such a qualitative notion of the relaxation of material 
already completely sufficient for the establishmant of the 
Chetaev systems, similar to that formulated by Gauss. 

relaxed 

systems is 

property of 

Actually, let A be some Chetaev material system. lben assune that some 
system B is obtained by a relaxation of the system A, and system B is 
such that its ~allowable displacements9 include all *allowable displace- 
ments’ of system A. 

(Note. It rill be shorn belou that if sgstem B is also a Chetaev 
system. then the ‘allarable displacements” -of the original system nil1 
also be found among the .allorable displacements of the latter. The last 
remark ceases to be essential for this case). 

Lt us denote by ul, . . . . u3,, the actual accelerations of system A, 



bY VI’ **en usn its virtual 14 I accelerations. SystemB is more relaxed, 
and thus its actual accelerations may differ from the actual accelera- 
tions of system A. I& us denote them by ‘ol# a sen wsne Furthenn~re, we 
denote by 8X1) l a*) %I the #possible displacemsnts of system A and by 
6*x,, l -e) 23+x3,, the possible displacements~ of system& Finally, we de- 
note byXI, . . . . X3,, the forces* which act on systems A and B. 

We write for each one of the studied systems the fwknental equation 
of mechanics 

According 

5 (WliUi - Xi) 6Xi = 0, $ (n/.iWi - Xi) 6'Xi = 0 (1.3) 
f=1 i=l 

to the condition we have 

Thus, equations (1.3) can be written in the following fashion: 

& (WZiUi - Xi) 6Xi zZz 0, 5 (WZ@lli - Xi) 8Z{ = 0 
i=l i=l 

E3y subtracting the second equation from the first, the tern with the 
forces are eliminated, and we obtain 

& nli (Ui - Wi) 6x1= 0 (1.4) 
i=l 

On the other hand, since system A is a Chetaev system, then 

&Xi = Ui- Vi 

lhese equations allow us to rewrite relation (1.4) as 

i”; I?11 (Ui - W*) (Ui - ?I*) = 0 

w 

‘Ihe last relation reduces to the form 

A w--AA,,+ Auu=O 

Here the expression for A,,,, is of the form 

(1.5) 

and the expressions for A 
I 

B”dA”U 
permutation of the varisb es. 

are obtained franAaV by a cyclic 

l During relaxation of a material system the forces acting umn it do 
not change. 
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The value of A,,,, is not negative, thus it follows from &u&ion (1.5) 

that 
AU, < 4, 

‘Ihe values A,,, and A,, are called, respectively, the measures of devi- 
ation of the actual and the virtual motions from the motion of the re- 
laxed system. In the case of complete relaxation this concept coincides 
with the Gaussian concept of system relaxation. Thus we have the follow- 
ing theorem. 

morea. If a material system A is a system of the Chetaev type, and 
a system B is obtained by relaxation of the system A and the -possible 
displacements l of system B contain all the ‘possible displacementsm of 
system A, then the law of least deviation of the actual motion of the 
system from the relaxed system holds (generalized Gauss’ principle). 

Let us turn now to the derivation of the mathematical algorithm from 
the qualitative definition of the relaxation of material systems given 
above. Let us limit ourselves to the case where the relaxation of the 
Qletaev system to be studied takes place in a class of systems with con- 
straints of the form (1.1). 

2. (a) Take some arbitrary material system of the Cbetaev type, Danote 
the Lagrangean coordinates of the system by ql, . . . . q,; let plR l **I P 
be those of the generalized velocities which are ass-d to be k&pen-* 
dent. ‘Ihen because of the constraint equations of the studied system we 
canwritet31 

~t===ai(t,q,,...,q,), xi’ = hi (t, ql, . * * 9 $3 PI, - * - 9Ps) (2.1) 

‘Ibe right-hand sides of Equations (2.1) are assumed to be differenti- 
able functions of all argumants shm, 

(Rote. Equations 

z*’ = &* (1, “II* * . . t q,*ps* . , . ,pJ (2 3 

can be written in another forr. 

All coordinates q are actaally written out on the right-hand sides of 

these equetioim. However. this does not %e8n set that they all should be 
there. In p%FtiCUl%r cases some and even all ~a ray drop oat from the 
rfght4and sides of Equations (2.31. With this case in mind and also con- 
sidering the fsct that it is not known beforehand which cr,’ will be 
chosen to be independent, Equations (2.21 can be rewritten as 

x*#= b* (2, Ql. . . . * 4p Ql'. * f * 9 Qr’) (2.3) 

with the essential limitation, however. that the dependent derivatives 

h’ drop oat of these equations. Such a notation possesses symmetry and 
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this Is a very Important property. 

The dependent values q= ’ are known to drop out of Equations (2.3). 
Further, some Q may drop out of these Equations. Thus, it Is entirely 
possible that some of the qs which drop oat of equations (2.3) drop out 
together with their derivatives. In such cases (having changed If 
necessary the numbering order of the variables q) one can write instead 
of (2.3) the equations 

xi = $(t, Ql* . . * 9 9k' a', . . . 9 9k') (2.4 

where k < r, and all coordinates shorn in these equations are represent- 
ed by at least their derivatives. Such a ray of representing the multi- 
plicity of the real velocites of the system in the problem of aaalysing 
the relaxation of material systems was used by 11.0. Chetaev [ 4 1.1 

Together with system A let us study sane arbitrary material system 
uhich is obtained by means of a relaxation of syuten A. We denote it by 
the letter B. AccordiIlg to the mtion, the constraint equations of 
system B should be of the form (1.1). ‘lhus, soms description of the few 
(2.1) should hold for system B, as uell as for system A. Assuss that it 
is 

a =m,Q, ,..., m, ~‘=b;(m ,..., Qrf,P1 ,..., pa9 (2.5) 

‘Ihe qusntities Q1, . . . . Q,* in these equations are the Lsgrangeapl co- 
ordinates of system B, the parameters P,, . . . . P,r are those of the ge- 
neral&d velocities of the systemB uhich are taken to be indeperukt. 
Ihe functions ai*, b,* are assuIcd to be differentiable with respect to 
all argtmmnts, as in the case of system A. 

(b) The multiplicity of the positions of system A depends on r inde- 
pendent parwneters and the multiplicity of the positions of systenB on 
’ independent parasreters. Systsu B is obtained by a relaxation of A. 

Ls 

rf > r (2.6) 

On the other hand, since system B is obtained by relaxation of system 
A the multiplicity of its virtual accelerations in its arbitrary state, 
uhich is permissible in the concept of system A, should bs at any given 
instsnt lar*r than the multiplicity of the virtual accelerations of 
system A, which uas analyzed in the sass state at the same instant. Frcrr 
this follous the relatkship betrean s and s'. 

Indeed, after differentiating, with respect to time, the expressions 
for the velocities xi’ of the basic and correspondingly of the relaxed 
system, and then expressing in the resultingequationsthe generalised 
velocities q’ by nuns of the parasleters p and the gancralised velocities 
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Q’ by means of the parameters P, we obtain the equations 

%,“=cr(t,Q,P)+ &ie(W+Pe~, %i” = cr* (& V, P) + i;, c@b* (6 Q, P) P, 
8-l p-1 (2.7) 

for the basic snd the relaxed systeem, respectively. ‘Ihe derivatives p’ 
and P’ do not depend on the values of the remaining paramters. ‘lhus, in 
every state which is acknissible for both systems under consideration, the 
multiplicities of the virtual accelerations of the basic and the relaxed 
systema depend on s and s’ independent parameters, respectively. Thus, 
we have 

r#)/r, s’ > s (2.8) 

Fran these inequalities it also follows that within the framework con- 
sidered, the relaxation of the Chetaev system is always accompanied by a 
reduction of the nunber of equations of constraint of this system. 

(cl Because of the properties of relaxation, all states that are 
a&nissible for system B should be admissible for system A. lhus, for an 
arbitrary system of values ql*, l **, q, *n PI+, l l *a, P, at an arbitrary 
instant t a system of values Q1*, . . ., Qr*, PI+, . . ., P.+ should exist, 
such that the following equalities are satisfied: 

ai (4 QA . . . , Q/) = ai (t, q1.v . . . , qr*) 
hi- (t, Q;, . . . , QP*, PI*, . . . , W) = h (t, ql*, . . . , $9 p;, . . . , p;) 

In other words, the functions 

K(U1,. * * ,Qr), %’ 0, Ql, * - - ,Qr, Pl, - * * , Pa) 

should exist where the equations 

&’ (t,F1*, . . . J-v) = arkq1, - * * ,qr) 

h'(t,F;, . . . , PC', al*, . . . , Q)/) = bi(t, ql, . . . ,qr, pl, . . . , p.) (2.9) 

are satisfied identically for all argrrments. 

Let us find these functions. 

Because of Equations (2.5) the parameters Q are differentiable func- 
tions of time and sass f’ coordinates x (let x1, . . . . %r#_) and the para- 
meters P are differentiable functions of time, coordinates x1, 
and some s’ velocities x1’, . . . . xr,’ (let x1’> . . . . x~.‘): 

. . . . XrD 

Qx = Ix @, 51, . . . , e), P, = ‘p,, (t, II, . . . , frc, q’, . . . , zar)) (2.10) 

We will show that the functions 
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pa* = ja (t, al, . . . , a,+, qL*=(PIL(t,F; ,..*, Fr/,b1,..., b,,) (2.11) 

satisfy Equatious (2.9)) depend on all q and p, and are thus the uuknowus. 

Actually, the follow& identities hold: 

2~fax*(t,j,, . . * ) fr*), qh’=bp* (&11, . . . , jr,, p1, * * . fpd) 

(,,=I ,...) r’,p=l,..., s’) 

‘hey are not violated when xi and xi’ are replaced by the values from 
(2.1). nuls 

ax* (t, RI*, . . . , F,*‘) E a?., 6,’ (t, PI*, . . . , F,/, Q)1*, . . . , a&*.) t 6, 

On the other hand, the constraint equations of system B will be be- 
cause of the equations (2.5) and (2.10) 

%‘+I = a;*+, (k il. . l * , fr,), * * . 

";.+l = b:#+l (6 fl, * * * 9 fr? 'pl, * * * , qv), * l l (2.12) 

System B is obtained by the relaxation of system A. ‘Ihus, Equations 
(2.12) should be satisfied identically if Xi and Xi’ are replaced in them 
by the expressions (2.11, i.e. 

a;,+, (t, PI’, . . . , F,,‘) E a,r+,, . . I 

b;,+l (t, F1’, . . . , F,.p’, Q;, . . . , @et*)= b,*+i, . . . 

l’hus, it is proved that functions (2.11) satisfy the identities (2.9). 
From these identities it is obvious that the functions Fx* should depend 
on all q and the functions (BP l on all p. This completes the proof. 

‘Ihe numbers r, s, r’j s’ are restricted by the inequalities 

r<r’, s < s’ 

This means that there are not more parameters q than parameters Q and 
there are known to be fewer parmaters p than parameters P. 

Let us supplement the system of parameters q to the number r’ and the 
system of parmeters p to the number s’ by means of the independent para- 
meters t aud q, and let us perform the following chauge of variables in 
Equations (2.5) : 

QA = FA (t, ql, . . ., qr, El, . . . , b-J 

P, = @I&, q1, . . . , qr, El, . . . 1 EC- r, PI, . * * , Pm q1, * . * , w-r) (2.13) 

where 
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r’-r 

FA = F; -t- x FA, (4 q, p) E, 

and where the differentiable functions Fxy , iDp,,, Qp, 8 are so chosen as 
to satisfy the inequality 

8 (Fl, . . . , F,., @,1, . . . , m,,.) 

a(% . . . , Q,, Cl, f . . , 4,L,B Plv . * . I ps, rll, . . . , ?*Lr) #O 

Because of this inequality, the transformation (2.13) is not degene- 
rate, and thus one can find for every allowable state of system B a 
corresponding system of the values of paraneters q, p, tf, 11. Ihe converse 
follows directly from Equations (2.13). 

By substituting the expressions for Q and P from Equations (2.13) into 
(2.5) we obtain 

Zi = Aj (t, Q1, : . . , Qr, El. + . - 9 Err-r) (2.14) 
Xi’ = Bj(t, 91, . . . * qr, El9 . . ” . , ar -r, PI, * * * t pa, 719 * ’ * 9 $‘-r 1 

‘Ihe right-hand sides of these Equations are such that they pass into 
ai and bi, respectively, if one sets all 5 and 11 in them equal to zero. 

lhus if system B is obtained by a relaxation of system A, then one 
can write a description of it in the form (2.14). 

On the other hand, it is not difficult to verify that if one can write 
for any arbitrary system B a description of the form (2.14) then this 
system is relaxed in relation to system A. 

‘Ihus we obtained the following mathematical algorithm of the relaxa- 
tion of a aetaev system. 

In order to perform a relaxation of any material system of the Chetaev 
type whose multiplicity of the achnissible states is given by the equa- 
tions 

one should transform it in such a fashion that in the new system the 
multiplicity of the acbnissible states be given by the equations 
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where 6 and 7 are additional independent parmeters, Ai and Bi are in- 
dependent quantities in their arguments and trausform into the functions 
si ad bi, respectively, if all[ andq are set equal to zero. 

(d) Ihe algorithm of the relaxation of material systems according to 
Cbetaev is included in the transformation of any given material system, 
for which the description (2.4) is written for the multiplicity of the 
real velocities of the system, into a form in which this mltiplicity 
would be given by the equations 

xi’ = b$(t, q1, . . . , qk, q;, . * - , qk’) + pi (t, ql, . . t qk, il, - . * , t,, El’, . . . , t,‘) 

h3-e Cl, l **t f‘,, 51’, l **t 5,’ me additional independent parameters 
and their derivatives and the functions Bi are indspendent fuuctious of 
the given argmutntswhich vanishwhenone lets alle ande be equal to 
sero. 

Ckaqmring this algorithmwiththatobtainedin this paper, we see 
that after the paraaaters p and q iu &uatims (2.16) are expressed in 
terms of parmeters q, 2‘ and their derivatives, the difference between 
these algorithms reduces to the functions of different degrees of general- 
ity used in the right-hand sides of Equations (2.16). 

3. Let us return now to the problem of the l possible di8placemsntsn 
ofthebasic and the relaxed systemsin the case where both areaLetaev 
systeaas. 

As already noted above, the following equatious hold for the Chetaev 
system 

6g = ui- Ui (3.1) 

The values ui and vi are went8 of the actual and of any virtual 
accelerations of the system, respectively. 

According to (2.7) they are expressed by the equations 

where pfi’ denote the magnitudes of 
the actual motion. 

lhus 

the values of pp’ corresponding to 

as=. i WJb (3 2) 
B-1 

where uf~ - pm’ - pp are, obviously, independent. Assuning that 
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abi 
C{fl = - 

% 

we rewrite equations (3.2) in the form 

The following theorem holds. 

‘Jkorer. If the basic and the relaxed system are both Chetaev systems 
then the mpossible displacements 9 of the basic system are always mong 
the lpossible displacenumtsm of the relaxed system. 

Actually, let systems A and B be the basic snd the relaxed systems, 
respectively. Assuae that for the first system the description (2.15) 
and for the second one (2.161 holds. lhen the following equations will 
hold for the “possible displacements” of systems A and B, respectively: 

In the second group of equations, let all 6, 9 aud also II be equal to 
zero. &note this substitution by square brackets; then 

Thus, if the conditions 6 = q = A = 0 are satisfied, then the ex- 
pressions for the ‘possible displ acements’ of the relaxed system traus- 
form into the expressions for the ‘possible displaoemmts” of the basic 
system. Ihis completes the proof. 
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